from sklearn import tree
from sklearn.model_selection import StratifiedShuffleSplit, GridSearchCV, cross_val_score
import matplotlib.pyplot as plt
import numpy as np
cv = StratifiedShuffleSplit(n_splits=10, test_size=0.1, random_state=42)
clf = tree.DecisionTreeClassifier(criterion='entropy', random_state=42)
score = cross_val_score(clf, X, y, cv=cv).mean()
print(score)
clf = tree.DecisionTreeClassifier(criterion='gini', random_state=42)
score = cross_val_score(clf,X, y, cv=cv).mean()
print(score)